Search results for "Zone plate"

showing 10 items of 19 documents

Generation of programmable 3D optical vortex structures through devil’s vortex-lens arrays

2013

Different spatial distributions of optical vortices have been generated and characterized by implementing arrays of devil's vortex lenses in a reconfigurable spatial light modulator. A simple design procedure assigns the preferred position and topological charge value to each vortex in the structure, tuning the desired angular momentum. Distributions with charges and momenta of the opposite sign have been experimentally demonstrated. The angular velocity exhibited by the phase distribution around the focal plane has been visualized, showing an excellent agreement with the simulations. The practical limits of the method, with interest for applications involving particle transfer and manipula…

media_common.quotation_subjectDiffractive lensesDammann gratingslaw.inventionLiquid-crystal displayDiffractive lensOpticsExcellencelawElectrical and Electronic EngineeringAngular-momentumEngineering (miscellaneous)Diffractive opticsmedia_commonOptical vorticesPhysicsbusiness.industryVorticesQuantum information processingAtomic and Molecular Physics and OpticsVortexLens (optics)Zone platesFISICA APLICADAbusinessOptical vortexApplied Optics
researchProduct

Self-similar focusing with generalized devil's lenses

2011

[EN] We introduce the generalized devil's lenses (GDLs) as a new family of diffractive kinoform lenses whose structure is based on the generalized Cantor set. The focusing properties of different members of this family are analyzed. It is shown that under plane wave illumination the GDLs give a single main focus surrounded by many subsidiary foci. It is shown that the total number of subsidiary foci is higher than the number of foci corresponding to conventional devil's lenses; however, the self-similar behavior of the axial irradiance is preserved to some extent. (C) 2011 Optical Society of America

DiffractionFresnel zoneFocus (geometry)Physics::Medical PhysicsPlane waveDiffraction efficiencyPhysics::GeophysicsOpticsDiffractive lensSelf-similar focusingGeneralized devil’s lensesAxilial irradiancePhysicsbusiness.industryKinoformFractal zone platesOpticsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsCantor setFISICA APLICADALiquid-crystalComputer Vision and Pattern RecognitionbusinessGDLs
researchProduct

Ultrastable Holographic Cyclic Interferometer

1990

ABSTRACT We propose to use an off-axis zone plate, as beam splitter and as beam recombiner, to set a cyclic interferometer. We show that this optical device can be tuned to generate, with high stability, cosinusoidal gratings and/or cosinusoidal zone plates. 1. INTRODUCTION Several modern optical devices incorporate holographically generated optical elements; either for substituting conventional optical elements, or for introducing novel techniques for manipulating light.In particular, in the field of interferometry there are attemps to use diffracting ele­ ments for testing large optics; without using large beam splitters1"^.The aim of this work is to suggest, and to experimentally verify,…

WavefrontMaterials sciencebusiness.industryHolographyPhysics::OpticsZone plateHolographic interferometrylaw.inventionInterferometryOpticslawAstronomical interferometerbusinessBeam splitterBeam (structure)SPIE Proceedings
researchProduct

Twin axial vortices generated by Fibonacci lenses.

2013

Optical vortex beams, generated by Diffractive Optical Elements (DOEs), are capable of creating optical traps and other multifunctional micromanipulators for very specific tasks in the microscopic scale. Using the Fibonacci sequence, we have discovered a new family of DOEs that inherently behave as bifocal vortex lenses, and where the ratio of the two focal distances approaches the golden mean. The disctintive optical properties of these Fibonacci vortex lenses are experimentally demonstrated. We believe that the versatility and potential scalability of these lenses may allow for new applications in micro and nanophotonics.

Fresnel zoneFibonacci numberDevils vortex-lensesLightNanophotonicsPhysics::OpticsMicroscopic scaleOpticsLight beamScattering RadiationGolden ratioComputer SimulationDiffractive opticsLensesPhysicsOptical vorticesbusiness.industryFractal zone platesEquipment DesignModels TheoreticalAtomic and Molecular Physics and OpticsVortexEquipment Failure AnalysisRefractometryFISICA APLICADAComputer-Aided DesignbusinessOptical vortexDiffractionOptics express
researchProduct

Direct observation of spin wave focusing by a Fresnel lens

2020

Spin waves are discussed as promising information carrier for beyond complementary metal-oxide semiconductor data processing. One major challenge is guiding and steering of spin waves in a uniform film. Here, we explore the use of diffractive optics for these tasks by nanoscale real-space imaging using x-ray microscopy and careful analysis with micromagnetic simulations. We discuss the properties of the focused caustic beams that are generated by a Fresnel-type zone plate and demonstrate control and steering of the focal spot. Thus, we present a steerable and intense nanometer-sized spin-wave source. Potentially, this could be used to selectively illuminate magnonic devices like nano-oscill…

PhysicsDiffractionbusiness.industryFresnel lensLarge scale facilities for research with photons neutrons and ions02 engineering and technologyZone plate021001 nanoscience & nanotechnology01 natural scienceslaw.inventionCondensed Matter::Materials ScienceSemiconductorOpticslawSpin wave0103 physical sciencesMicroscopySpinplasmonicsCaustic (optics)010306 general physics0210 nano-technologybusiness
researchProduct

Multifractal zone plates

2010

We present multifractal zone plates (MFZPs) as what is to our knowledge a new family of diffractive lenses whose structure is based on the combination of fractal zone plates (FZPs) of different orders. The typical result is a composite of two FZPs with the central one having a first-order focal length f surrounded by outer zones with a third-order focal length f. The focusing properties of different members of this family are examined and compared with conventional composite Fresnel zone plates. It is shown that MFZPs improve the axial resolution and also give better performance under polychromatic illumination.

DiffractionPhysicsFresnel zonebusiness.industryComposite numberMultifractal systemZone plateDiffraction efficiencyAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialslaw.inventionOpticsFractallawFocal lengthComputer Vision and Pattern Recognitionbusiness
researchProduct

Lacunar fractal photon sieves

2007

We present a new family of diffractive lenses whose structure is based on the combination of two concepts: photon sieve and fractal zone plates with variable lacunarity. The focusing properties of different members of this family are examined. It is shown that the sieves provide a smoothing effect on the higher order foci of a conventional lacunar fractal zone plate. However, the characteristic self-similar axial response of the fractal zone plates is always preserved.

PhotonMaterials sciencebusiness.industryFOS: Physical sciencesZone plateAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialslaw.inventionPhoton sieveFractalOpticsDiffractive lenslawLacunarityElectrical and Electronic EngineeringPhysical and Theoretical ChemistrybusinessSmoothingPhysics - OpticsOptics (physics.optics)Optics Communications
researchProduct

Fractal zone plates.

2003

Fractal zone plates (FZPs), i.e., zone plates with a fractal structure, are described. The focusing properties of this new type of zone plate are compared with those of conventional Fresnel zone plates. It is shown that the axial irradiance exhibited by the FZP has self-similarity properties that can be correlated to those of the diffracting aperture.

PhysicsDiffractionanimal structuresFresnel zonePhysics::Instrumentation and DetectorsAperturebusiness.industryrespiratory systemZone plateElectromagnetic radiationAtomic and Molecular Physics and Opticslaw.inventionPhysics::Fluid DynamicsFractalOpticslawnatural sciencesAstrophysics::Earth and Planetary Astrophysicsbusinesscirculatory and respiratory physiologyOptics letters
researchProduct

Diffractive corneal inlay for presbyopia

2017

[EN] A conceptually new type of corneal inlays for a customized treatment of presbyopia is presented. The diffractive inlay consists on a small aperture disc having an array of micro-holes distributed inside the open zones of a Fresnel zone plate. In this way, the central hole of the disc lets pass the zero order diffraction and produces an extension of the depth of far focus of the eye, while the diffracted light through the holes in the periphery produce the near focus. Additionally, the micro-holes in the inlay surface fulfill the essential requirement of allowing the flow of nutrients through it to the cells of the corneal stroma. Theoretical and optical-bench experimental results for t…

Point spread functionDiffractionMaterials sciencegenetic structuresCorneal Stromamedicine.medical_treatmentDiffractive lensesVisual AcuityGeneral Physics and AstronomyZone plateProsthesis Design01 natural sciencesGeneral Biochemistry Genetics and Molecular Biologylaw.inventionCornea010309 optics03 medical and health sciences0302 clinical medicineOpticslawcorneaRefractive surgeryCornea0103 physical sciencesmedicineHumansGeneral Materials ScienceRefractive surgerydiffractive lensesintegumentary systemInlaybusiness.industryGeneral EngineeringProstheses and ImplantsPresbyopiaGeneral ChemistryPresbyopiamedicine.diseaseCorneal inlayeye diseasesmedicine.anatomical_structureFISICA APLICADArefractive surgery030221 ophthalmology & optometrysense organsbusinessJournal of Biophotonics
researchProduct

Monolithic focused reference beam x-ray holography

2013

Fourier transform holography is a highly efficient and robust imaging method, suitable for single-shot imaging at coherent X-ray sources. In its common implementation, the image contrast is limited by the reference signal generated by a small pinhole aperture. Increased pinhole diameters improve the signal, whereas the resolution is diminished. Here we report a new concept to decouple the spatial resolution from the image contrast by employing a Fresnel zone plate to provide the reference beam. Superimposed on-axis images of distinct foci are separated with a novel algorithm. Our method is insensitive to mechanical drift or vibrations and allows for long integration times common at low-flux…

PhysicsMultidisciplinarybusiness.industryHolographyX-rayGeneral Physics and AstronomyGeneral ChemistryZone plateBioinformaticsGeneral Biochemistry Genetics and Molecular BiologyImage contrastArticlelaw.inventionsymbols.namesakeFourier transformOpticslawReference beamsymbolsddc:530businessImage resolution
researchProduct